# MODELING AND SIMULATION FOR RF SYSTEM DESIGN

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 All Pages

INTRODUCTION TO VHDL-AMS
69
reference node linearly depends on the equations for the other nodes. Thus, it
will not be part of the system of network equations. Kirchhoff's Voltage Law
(KVL)
requires that the sum of branch voltages of a mesh with respect to
their orientation equals zero. The equations which result from Kirchhoff's
laws can be automatically established on the base of the network graph. That
means they only depend on the network topology (see Figure 6-7 for the
example).
Furthermore, the voltage-current constitutive relations of the branches
must be fulfilled. These equations define further restrictions to branch
voltages and currents (see Figure 6-8 for the example). They must be
independent of the equations given by Kirchhoff's laws.
R1
v
R1
i
R1
v
in
(t)
i
q
v
q
C
i
D
i
C
v
D
v
C
voltage source =>
0
)
(t
v
v
in
q
resistor R1 =>
1
1
1
R
R
i
R
v
diode =>
,...)
(
D
D
v
f
i
capacitor =>
dt
dv
C
i
C
C
Figure 6-8.
Symbols to describe the constitutive relations of branches
Conclusions
All these conditions (KCL, KVL, constitutive relations) must be fulfilled
by the branch voltages and currents that solve the network analysis problem.
A differential algebraic system of equations has to be evaluated:
0
)
,
,
,
(
t
p
dt
dx
x
F
with
n
R
x
)
,
0
[
:
(time
)
,
0
[
x
and fixed parameters
m
R
p
)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 All Pages

Summary :

## A differential algebraic system of equations has to be evaluated: 0 ) , , , ( t p dt dx x F with n R x ) , 0 [ : (time ) , 0 [ x and fixed parameters m R p )

Tags : equations,network,relations,figure,kirchhoffs,constitutie,branch,oltages,example,see,laws,system,branches
Related Documents

 Terms    |    Link pdf-search-files.com    |    Site Map    |    Contact    All books are the property of their respective owners. Please respect the publisher and the author for their creations if their books copyrighted © 2009 pdf-search-files.com